项目文章||芡实与金鱼藻三代基因组揭示早期被子植物演化

2020年2月24日,国际著名植物学研究期刊Nature Plants发表了题为”Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution”的文章,该研究公布了被子植物的两种早期演化分支代表种:芡实和金鱼藻的染色体水平基因组序列,通过与其它代表性陆生被子植物代表基因组进行了深入的比较分析,揭示了早期被子植物的复杂演化历史。来自四川大学的杨勇志(现为兰州大学青年研究员)和华北理工大学的孙朋川是论文的并列第一作者;四川大学教授刘建全、席祯翔,华北理工大学教授王希胤、哈佛大学教授 Charles C. Davis是论文的通讯作者;刘建全教授为该项目的总负责人。武汉未来组承担了芡实和金鱼藻的纳米孔测序工作。
被子植物,或称开花植物,是地球上多样化程度和物种丰富度最高的类群之一,早期被子植物的突然出现和迅速多样化使被子植物的起源成为著名的达尔文“讨厌之谜”。几十年的努力已经极大地解决了被子植物的系统发育问题,但是主要分支之间的演化历史始终存在争议。例如,核心被子植物的五大类群之间的系统发育关系仍存在模糊不清的地方。核心被子植物包含约99%的现存被子植物,分为真双子叶植物、单子叶植物、木兰类植物、金鱼藻目以及金粟兰目五大类群,现有研究根据不同的形态学或分子层面证据,提出了不同的发育分支拓扑结构。
基因组数据能够提供更加丰富和有说服力的证据来解决物种进化分歧问题。本研究采用三代Nanopore长读长测序数据和二代illumina短读长数据,分别组装出芡实(725.23Mb, Contig N50=4.75 Mb)和金鱼藻(733.26Mb, Contig N50=1.56 Mb)的基因组序列,随后结合Hi-C数据,将基因组提升至染色体级别。评估表明两个基因组显示了高度的连续性、完整性和准确性(图1a),并与细胞学研究中获得的染色体数目相匹配。
随后研究者在芡实基因组中检测到两个多倍化事件,校正进化速率之后,估计芡实基因组中的两个多倍化事件分别发生在大约16-18百万和94-106百万年前(Ma)。在金鱼藻中检测到三个多倍体化事件,估计分别发生在大约13-15 Ma,127-143 Ma和157-177 Ma。并且被子植物的五个主要演化分支,金鱼藻、睡莲类、木兰类、单子叶植物和真双子叶植物中都发生了多个独立的多倍化事件(图1b),并且芡实最近还经历了一次基因组加倍。

图1 比较基因组分析。a芡实和金鱼藻基因组特征; b平均同义替换水平(Ks)在同位块间的分布。
研究者从13种被植物和1种裸子植物基因组序列中鉴定出1,374个单拷贝核基因用于构建系统发育树,首次涵盖两个基础被子植物类群(无油樟目无油樟、睡莲目芡实)以及核心被子植物五大类群中的四个(4个真双子叶植物,3个单子叶植物,3个木兰类植物,金鱼藻目金鱼藻)。采用两种方法连接并分析蛋白质编码区获得了两个数据集(SSCG-CDS 和SSCG-Codon12)构建进化树表明,无油樟和睡莲类依次是其他被子植物的姐妹群,同时推测金鱼藻是真双子叶植物的姐妹群(图2a,b)。同时,研究者还利用OrthoMCL方法和新开发的物种发育树构建方法STAG证实了上述结论的可靠性(图2a)。
随后研究者使用DensiTree 对SSCG-CDS和SSCG-Codon12两个发育树进行可视化,发现二者存在普遍的拓扑冲突(图2c),无油樟目和睡莲目之间的拓扑分支冲突和金鱼藻系统发育位置的矛盾(图2d)。并且无油樟目和睡莲目的系统发育位置在基因树和物种树之间存在大量不一致(图2e)。这些分析表明,在早期被子植物进化过程中可能存在大量的不完全谱系分选(ILS),造成主要分支之间基因树、或核基因组-叶绿体基因组系统发育树分支关系不一致。
          

图2 早期分化被子植物的系统基因组分析。a 基于MCMCTree推断的SSCG-CDS数据集的被子植物早分化年表;b DiscoVista物种树分析;c SSCG-CDS(红色)和SSCG-Codon12(橙色)叠加超矩阵基因树。d SSCG-CDS和SSCG-Codon12中物种树内部分支的三种拓扑的频率(q1-q3)。e 基因树的兼容性
总之,本研究组装出了两个早期水生被子植物——芡实和金鱼草的高质量染色体水平基因组,结合其他代表性被子植物主要类群,利用多个数据集和多种方法,深入解析了被子植物的早期演化以及不同类群之间的系统发育关系。这些发现有助于研究被子植物中主要分支的演化次序和生境转变、植物生命之树重建,特别是水生被子植物适应性演化、不同类群的古多倍化等复杂进化历史。
参考文献:
Yang Y, Sun P, Lv L, et al. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution[J]. Nature Plants, 2020: 1-8.
0 回复

发表评论

想参加讨论吗?
请尽情讨论吧!

发表评论

邮箱地址不会被公开。 必填项已用*标注